Modelling Accretion in Protobinary Systems
نویسندگان
چکیده
A method for following fragmentation simulations further in time using smoothed particle hydrodynamics (SPH) is presented. In a normal SPH simulation of the collapse and fragmentation of a molecular cloud, high-density regions of gas that form proto-stars are represented by many particles with small separations. These high-density regions require small time steps, limiting the time for which the simulation can be followed. Thus, the end result of the fragmentation can never be deenitively ascertained , and comparisons between cloud fragmentation calculations and the observed characteristics of stellar systems cannot be made. In this paper, each high-density region is replaced by a single, non-gaseous particle, with appropriate boundary conditions, which contains all the mass in the region and accretes any infalling mass. This enables the evolution of the cloud and the resulting protostars to be followed for many orbits or until most of the original cloud mass has been accreted. The Boss & Bodenheimer standard isothermal test case for the fragmentation of an interstellar cloud is used as an example for the technique. It is found that the binary protostellar system that forms initially does not merge, but instead forms a multiple system. The collapse is followed to 4 initial cloud free-fall times when approximately 80 per cent of the original mass of the cloud has been accreted by the protostars, or surrounds them in discs, and the remainder of the material has been expelled out to the radius of the initial cloud by the binary.
منابع مشابه
Millimeter Imaging of Hh 24 Mms: a Misaligned Protobinary System
The HH 24 MMS protostellar system was observed in the 6.9 mm continuum with a high angular resolution (0.5). HH 24 MMS was resolved into two sources. The separation between sources 1 and 2 is ∼0.9 or 360 AU. The spectral energy distribution suggests that the 6.9 mm flux is almost entirely from dust. The 6.9 mm image and the spectrum suggest that HH 24 MMS may be a protostellar binary system. To...
متن کاملPredicting the properties of binary stellar systems: the evolution of accreting protobinary systems
We investigate the formation of binary stellar systems. We consider a model where a ‘seed’ protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circum...
متن کاملThe Role of Thermal Conduction in Accretion Disks with Outflows
In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...
متن کاملEffect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملOn the role of self-organised criticality in accretion systems
Self-organised criticality (SOC) has been suggested as a potentially powerful unifying paradigm for interpreting the structure of, and signals from, accretion systems. After reviewing the most promising sites where SOC might be observable, we consider the theoretical arguments for supposing that SOC can occur in accretion discs. Perhaps the most rigorous evidence is provided by numerical modell...
متن کامل